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Sexual networks, partnership mixing, and the female-to-male ratio 
of HIV infections in generalized epidemics:  

An agent-based simulation study 

Georges Reniers1 

Benjamin Armbruster2 

Aaron Lucas3 

Abstract 

BACKGROUND 
Empirical estimates of the female-to-male ratio of infections in generalized HIV 
epidemics in sub-Saharan Africa range from 1.31 in Zambia to 2.21 in Ivory Coast. 
Inequalities in the gender ratio of infections can arise because of differences in 
exposure (to HIV-positive partners), susceptibility (given exposure), and survival (once 
infected). Differences in susceptibility have to date received most attention, but neither 
the relatively high gender ratio of infections nor the heterogeneity in empirical 
estimates is fully understood. 
 

OBJECTIVE 
Demonstrate the relevance of partnership network attributes and sexual mixing patterns 
to gender differences in the exposure to HIV-positive partners and the gender ratio of 
infections. 
 

METHOD 
Agent-based simulation model built in NetLogo. 
 

RESULTS 
The female-to-male ratio of infections predicted by our model ranges from 1.13 to 1.75. 
Gender-asymmetric partnership concurrency, rapid partnership turnover, elevated 
partnership dissolution in female-positive serodiscordant couples, and lower partnership 
re-entry rates among HIV-positive women can produce (substantial) differences in the 
gender ratio of infections. Coital dilution and serosorting have modest moderating 
effects.  
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CONCLUSION 
Partnership network attributes and sexual mixing patterns can have a considerable 
effect on the gender ratio of HIV infections. We need to look beyond individual 
behavior and gender differences in biological susceptibility if we are to fully 
understand, and remedy, gender inequalities in HIV infection in generalized epidemics. 
 
 
 

1. Introduction 

About 60% of adults living with HIV in sub-Saharan Africa are women, and that 
corresponds to a female-to-male ratio of infections of 1.48 (UNAIDS 2010).4 Empirical 
estimates of the gender ratio of infections in African populations with an HIV 
prevalence level above 1% range from 1.31 in Zambia to 2.21 in Ivory Coast (Figure 1). 
The highest gender ratios are found in a string of African countries along or just above 
the equator. Interestingly, the gender ratio does not exceed 1.60 in the southeastern 
African countries that are most severely affected by the AIDS epidemic. Our 
understanding of this variation in the gender ratio of infections in generalized epidemics 
is rather weak and that is partly because two-gender serosurveys have only been 
conducted on a regular basis since the availability of rapid HIV testing technologies 
(i.e., since the early 2000s). However, caution is necessary when interpreting empirical 
estimates of the gender ratio of infections because they may be affected by relatively 
high male non-response bias (Barnighausen et al. 2011; Reniers and Eaton 2009).5 
Distortions in empirical estimates of the gender ratio can also arise from the restricted 
age range to which these apply (often 15−49) because the female-to-male ratio of 
prevalent infections is generally lower (in some cases reversed) at older ages.6 
 

                                                           
4 By contrast, women account for 35% of all HIV positives in Central and South America (UNAIDS 2010). 
This estimate corresponds to a female-to-male ratio of infections of 0.54, and it is well understood that this 
large difference with generalized epidemics is related to the modes of transmission: the female-to-male HIV 
prevalence ratio is usually above unity in epidemics where heterosexual intercourse is the primary channel for 
new infections, and it is much lower in concentrated epidemics where sex between men or needle sharing 
among drug users are important epidemic drivers. 
5 It was precisely because of concerns over high refusal rates that the WHO initially chose to conduct 
anonymous surveillance in antenatal clinics (Chin 1990). 
6 Elaborating further on methodological issues in the measurement of gender inequity in HIV risk, it is worth 
noting that the gender ratio of prevalent infections, just as HIV prevalence itself, is a measure of the stock of 
infections over the whole reproductive age range. It thus includes recent as well as old infections, and it is 
dependent on the age structure of the population and gender differences in the survival of HIV positives (see 
below). Further, it is possible that higher levels of current infection in females in cross-sectional studies 
conceal equal or even higher cumulative HIV incidence among men (Gregson and Garnett 2000). 
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Figure 1: Female-to-male ratio of HIV prevalence in men and women of 
reproductive age (15−49, 2003−2011) 

 
 
Data sources: ORC Macro (2013), Shisana (2005), and CSO [Botswana] (2009). Estimates are restricted to countries with a female 

HIV prevalence above 1%. 

 
Aside from the data artifacts listed above, three categories of explanation exist for 

the relatively high female-to-male ratio of HIV infections in generalized epidemics: 
(1) women’s exposure to infected men is greater than men’s contact with HIV-positive 
women, (2) women’s susceptibility or acquisition probability per coital act with an 
HIV-infected partner is higher than that of men, and (3) HIV-positive women survive 
longer than HIV-positive men. In this contribution we study some of the mechanisms 
that contribute to the first of these explanations, namely differences in exposure to HIV-
positive partners. Our evidence comes from agent-based simulations wherein we model 
(gender-symmetric and gender-asymmetric) partnership concurrency, partnership 
turnover, coital dilution, HIV status-dependent partnership formation and dissolution, 
and serosorting as causal factors of interest. We do not intend to be exhaustive or 
explain empirically observed differences in the gender ratio of infections between 
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populations. Instead, we isolate a number of exposure factors that have not received 
much attention in discussions of the gender ratio of infections and demonstrate their 
pertinence. Before introducing the model we briefly review what is known about gender 
differences in exposure, susceptibility, and survival. 

Gender differences in the survival of HIV positives arise because men tend to be 
infected at older ages (see below), and an advanced age at infection is negatively 
correlated with survival post-infection (Gregson and Garnett 2000; Todd et al. 2007). 
Gender differences in survival may also result from differences in the uptake or 
adherence to antiretroviral therapy (ART).7  

Women’s greater susceptibility is attributed to a number of biological mechanisms, 
including differences in genital immunology that are well described in the literature 
(Chersich and Rees 2008; Higgins, Hoffman, and Dworkin 2010; Yi et al. 2013). A 
variety of co-factors may alter susceptibility to HIV infection, including the presence of 
both viral and bacterial sexually transmitted infections (STI) (Cohen 2004; Glynn et al. 
2001; Hertog 2008; UNAIDS/WHO 2000)8 and male circumcision (Auvert et al. 2005; 
Hertog 2008). The contributions of pregnancy (Gray et al. 2005; Marston et al. 2013; 
Morrison et al. 2007) and hormonal contraceptives to women’s disproportionally high 
infection rates are less certain (WHO 2012). Other factors with repercussions for HIV 
transmission pertain to the sex act itself, including vaginal versus anal sex, the use of 
vaginal drying agents, and forced sex (Chersich and Rees 2008). Finally, gender 
differences in ART uptake might alter the gender ratio of infections because onward 
transmission is reduced due to viral suppression. 

Several studies of serodiscordant couples in high-income countries have confirmed 
the gender difference in susceptibility (Mastro and de Vincenzi 1996; Nicolosi et al. 
1994), and it is now often assumed that women’s acquisition risk per coital act is at 
least twice as high as that of men. However, estimates of the gender ratio of 
transmission probabilities per coital act for low-income countries are much more 
diverse and not consistently above unity. The sources for that heterogeneity are not well 
understood (Boily et al. 2009; Powers et al. 2008). 

Of the class of explanations that revolve around gender differences in exposure, 
age mixing is best researched. Because men are often older than their female partners 
the exposure to HIV is possibly higher for women than for men, and age mixing has 
thus been proposed as an explanation for the relatively high prevalence rates in young 
women in particular (gender differences in HIV prevalence are more modest or even 
reversed in late adulthood) (Clark 2004; Gregson et al. 2002; Kelly et al. 2003; Leclerc-

                                                           
7 Early reports suggest that ART use is indeed higher among infected women than among men (Braitstein et 
al. 2008; Mills, Ford, and Mugyenyi 2009).  
8 STIs can influence the gender ratio of infections because they are more prevalent in women, or because they 
affect male-to-female transmission more than female-to-male rates.  
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Madlala 2008).9 At least one study from Kwazulu-Natal challenges this view (Harling 
et al. 2014). 

Studies addressing gender differences in other exposure factors are fairly limited. 
Worth noting, however, is the proposition that the gender ratio of infections is related to 
epidemic maturity: during the early phase of an epidemic, HIV infection is thought to 
be concentrated in female sex workers and their partners so that male prevalence 
exceeds that of women. With time, new HIV infections shift to long-term partners of 
those sex worker clients and the female-to-male ratio of infections may increase as a 
result of that (Carpenter et al. 1999; Gregson and Garnett 2000). This hypothesis thus 
revolves around the structure of sexual networks and its implications for the gender 
ratio of infections as the epidemic establishes itself in a population.  

Network structure is also the prime concern in this study. More specifically, we 
compare the gender ratio of infections in monogamous sexual networks and sexual 
networks with different levels of gender-symmetric and gender-asymmetric partnership 
concurrency.10 We introduce the distinction between gender-symmetric – assumed in 
the early modeling by Morris and Kretzschmar (1997) – and gender-asymmetric 
partnership concurrency because the latter is characteristic of populations that practice 
polygynous marriage. Empirical estimates of partnership concurrency, both formal 
(marriage) and informal, are also much higher for men than for women (Sawers 
2013).11 We also assess the compensating effect of a reduction in the per partner 
number of sex acts during episodes of concurrency (hereafter named ‘coital dilution’).12  

We extend the analysis of concurrency effects to other attributes of sexual 
networks, including the rate of partnership turnover and HIV-status-based partnership 
mixing. The importance of fast partnership turnover for epidemic propagation has been 
known for quite a while (May and Anderson 1987), but its implications for the gender 
ratio of infections has not been described to date. We expect that rapid partnership 
turnover will maximize gender differences in HIV prevalence, provided that the 
susceptibility of men and women is indeed different: as partnerships last longer, the 

                                                           
9 Young women’s incidence rates are also high because of the immaturity of their genital tract, which elevates 
susceptibility. In other words, a relatively early sexual debut and age mixing increases women’s exposure to 
HIV as well as transmission efficiency. In addition, a negative correlation exists between the age at infection 
and disease progression, and because women tend to be infected at younger ages they survive longer as HIV 
positives, which, in turn, elevates the gender ratio of infections in cross-sectional studies (Gregson and 
Garnett 2000; Todd et al. 2007). 
10 We refer to Morris and Kretzschmar (1997), Lurie and Rosenthal (2010), Mah and Halperin (2010), Sawers 
and Stillwaggon (2010), and Boily, Alary, and Baggaley (2012) for different points of view about the 
importance of partnership concurrency as an epidemic driver. 
11 A number of studies have suggested that reporting bias inflates these gender differences (Nnko et al. 2004), 
but gender differences are likely to persist even in the absence of reporting issues. 
12 Coital dilution is common in polygynous marriages; the evidence for coital dilution in other forms of 
partnership concurrency is mixed (Delva et al. 2013; Gaydosh, Reniers, and Helleringer 2013; Reniers and 
Tfaily 2012). 
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virus is more likely to spread to seronegative partners of HIV-positive individuals 
irrespective of the transmission probability, and the gender ratio of infections will come 
to depend more on other attributes of the network structure such as partnership 
concurrency. 

A final set of sexual mixing patterns under consideration relate to HIV-status-
based partnership formation and dissolution, namely (1) elevated dissolution rates in 
serodiscordant couples,13 (2) lower partnership formation rates of HIV positives, and 
(3) serosorting or homogamy based on HIV status. HIV-status-based partnership 
choices will become an increasingly important factor in the epidemiology of HIV as the 
uptake of HIV testing and counseling (HTC) increases, but from previous research we 
also know that individuals often act on imperfect information about their own or others’ 
HIV status (Watkins 2004). There are at least five studies that have suggested that 
partnership dissolution rates (through widowhood and divorce or separation) are 
significantly higher in serodiscordant couples, and particularly so in female positive 
serodiscordant couples (Carpenter et al. 1999; Floyd et al. 2008; Grinstead et al. 2001; 
Mackelprang et al. 2013; Porter et al. 2004). We will retain this gender imbalance in our 
simulations. Similarly, we develop scenarios with lower partnership formation rates 
among HIV-positive women. Such a pattern may arise from HIV-related morbidity, but 
also because those who are known or suspected to be HIV-positive are less desirable 
partners or withdraw from the partnerships market on their own initiative. Two studies 
from rural Malawi have identified these HIV-status-based partner recruitment strategies 
(Anglewicz and Reniers 2014; Reniers 2008). In combination with elevated dissolution 
rates in serodiscordant couples, the disproportionate recruitment of HIV-negative 
women into new partnerships causes the drift of HIV positives from the core to the 
periphery of sexual networks.14 The drift of HIV-positive women also explains the 
relatively high HIV prevalence rates in the divorced and widowed compared to 
(re)married women in cross-sectional studies (de Walque and Kline 2012). Serosorting, 
in turn, has been well described among men who have sex with men in concentrated 
epidemics (Parsons et al. 2005; Suarez and Miller 2001), but has received little attention 
as a mediating factor in populations with generalized epidemics (Reniers and 
Helleringer 2011). 

                                                           
13 Elsewhere we have argued that elevated partnership dissolution in serodiscordant couples reduces the 
spread of HIV (Reniers and Armbruster 2012). 
14 We have borrowed this expression from Helleringer and Kohler, who offer it as one of the explanations for 
the distribution of HIV positives in their sexual network study of the Likoma Island in Lake Malawi. They 
found an over-representation of certain socioeconomic groups (e.g., older respondents, women, widows) in 
the sparser regions of the sexual network and suggest that they might have been infected when they were 
“closer to the dense regions of the networks but subsequently drift into smaller disjoint components” 
(Helleringer and Kohler 2007: 2330). 
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2. Methods 

We demonstrate the effect of the sexual network structure and mixing patterns 
described above with a discrete-time agent-based model with one-month time steps 
built in NetLogo (Wilensky 1999). The code for the model is published in the NetLogo 
Modeling Commons as the HIV and Polygamy model15.  

The simulation tracks the characteristics of adult men and women and models their 
partnerships (Figure 2). We only account for heterosexual relationships and do not 
distinguish between formal and informal sexual partnerships. Each relationship has a 
constant hazard rate of dissolving, and each individual may have up to three 
relationships simultaneously. We do not, in other words, attempt to model networks 
with highly sexually active core groups such as commercial sex workers, but model a 
low degree network that is more characteristic of a generalized epidemic. 
 
Figure 2: Modeled entities and processes 

 
 
The rates for forming new partnerships are automatically selected so that the 

desired distribution of the number of partners for men and women in a user-defined 
scenario is attained. Table 2 contains the partnership degree distribution for each 
scenario. Before the start of the simulation of HIV transmission, the relationship part is 
run for 10 years to ensure that the initial partnerships distribution is in a steady state. 
Entry and exit rates from partnerships can be made dependent on HIV status, as is also 

                                                           
15 http://modelingcommons.org/browse/one_model/4339 
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the case for the choice of future partners. Within the constraints defined in the scenario 
settings, partner choice is random. 

HIV transmission is a key part of the model. The simulation tracks the HIV status 
of each individual as well as the stage of infection: acute, chronic, or AIDS. The acute 
stage and the final AIDS stage are 8 times and 4 times as infectious as the chronic stage, 
respectively. A woman in the chronic stage will infect any HIV-negative partner with a 
probability of 0.019 each month. The monthly transmission probability from an 
untreated man in the chronic stage to his partner is 0.038. In accordance with (some) 
empirical findings, we thus assume a greater susceptibility of women compared to men. 
These transmission parameter settings do not match one particular study, but fall in the 
range of values that have been reported in the literature (Boily et al. 2009; Wawer et al. 
2005). Note also that these are monthly transmission probabilities and not the 
probabilities per coital act.  

In scenarios with coital dilution, the probabilities are multiplied by a factor that 
represents the per partner reduction in coital frequency in partnerships with 
concurrency. More precisely, we multiply the monthly transmission probability by 0.8 
if the index person has two partners, and by 0.6 if he or she has three partners. These 
assumptions imply that more concurrency is associated with a larger number of coital 
acts in the simulated population, and differ from another coital dilution modeling study 
that rests on the stronger assumption that higher levels of concurrency lead to a 
reduction in the population-level number of coital acts (Sawers, Isaac, and Stillwaggon 
2011). 

The model is initialized by randomly allocating HIV infection to 5% of the 
subjects. We have chosen 5% because we are primarily interested in the dynamics of 
generalized epidemics and not so much in the conditions that explain or characterize the 
early expansion of an HIV epidemic. The time of infection for these seed cases is set to 
match historical estimates of incidence in Williams et al. (2006). An infected individual 
is in the acute stage for the first three months after seroconversion; the last 10% of the 
lifespan is considered to be the final AIDS stage. 

Our model focuses on adults aged 15−50. We assume that the number of males 
and females are equal, and match the 2009 age distribution for Zambia (UNPD 2013). 
We do not model specific patterns of age mixing in partnership formation. Individuals 
may die from AIDS or from causes unrelated to AIDS at an annualized rate of 6 per 
1,000. To account for AIDS-related mortality, the length of a seroconvertor’s lifespan is 
chosen from a Weibull distribution with a mean of 9.7 years and shape factor of 2.25. 
These parameter settings hold the middle ground between several empirical estimates, 
and assume that treatment is not available (Morgan et al. 2002; Todd et al. 2007). One 
further constraint is that the simulated population is held constant: each person who dies 
or turns 50 re-enters the population as an uninfected 15-year old individual of the same 
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gender without existing relationships. This constraint also precludes any appreciation of 
the implications of mother-to-child transmission for the gender ratio of infections 
among adults.   

The global model settings and key scenario assumptions are summarized in Tables 
1 and 2. We distinguish three types of sexual network: populations with monogamous 
partnerships only, populations with gender-asymmetric partnership concurrency (only 
men have concurrent partners), and populations with gender-symmetric concurrency. In 
each of these networks we vary the mean number of partnerships, and in the 
concurrency networks we also vary the level of concurrency. The quantity of 
partnerships is indexed by the mean number of partnerships per individual at any point 
in time (m), and the concurrency level is measured by the percentage of partnerships in 
the population that are concurrent (k) as defined by Morris and Kretzschmar (1997). A 
scenario with gender-asymmetric concurrency of level k=40 (and m=0.9) represents a 
population wherein 24% of the adult men have more than one partner at any point in 
time. In Togo, one of the countries with the highest polygyny rates in sub-Saharan 
Africa, 25% of the men aged 15−59 have more than one spouse (Anipah et al. 1999). In 
the symmetric case, k=40 implies a sexual network where about 12% of both men and 
women have multiple partnerships. Note that the scenarios with low and high levels of 
concurrency also differ in terms of the mean number of partnerships per person. The 
latter has implications for the interpretation of the results that we highlight later. 
 
Table 1: Global model settings 

Attribute  Value 

Population size    1250 

% HIV positive at t0    5% 

% on ART   0% 
Female-to-male monthly HIV transmission rate 
(chronic stage) 1.9% 
Male-to-female monthly HIV transmission rate 
(chronic stage) 3.8% 

Acute infectivity ratio  8 

AIDS stage infectivity ratio  4 

Survival time post-HIV infection   Weibull with mean=9.7 years and shape=2.25 

Background mortality rate  6 per 1,000 

Simulation length  25 years 
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Populations with a low rate of partner change are those where the monthly 
partnership dissolution rate through separation or divorce is d=0.0167. We contrast 
those with networks wherein the monthly dissolution rate is d=0.0556. These separation 
rates translate into average partnership durations (in the absence of death) of 5 and 1.5 
years, respectively. These levels are not necessarily chosen to match empirically 
observed patterns for entire populations, but could represent the partnership turnover 
rates in sub-populations. 
 
Table 2: Scenario-specific settings 

Mean number of partners (m) and level of concurrency (k) 

   Monogamy Asymmetric concurrency Symmetric concurrency 

  # partners m=0.8, k=0 m=0.9, k=0 m=0.8, k=15 m=0.9, k=40 m=0.8, k=15 m=0.9, k=40 

  Male 0 0.2 0.1 0.3 0.4 0.25 0.25 

  1 0.8 0.9 0.62 0.36 0.71 0.63 

  2 - - 0.06 0.18 0.03 0.09 

  3 - - 0.02 0.06 0.01 0.03 

  Female 0 0.2 0.1 0.2 0.1 0.25 0.25 

  1 0.8 0.9 0.8 0.9 0.71 0.63 

  2 - - - - 0.03 0.09 

  3 - - - - 0.01 0.03 
 

Coital dilution factor  

 
Reduction in the monthly probability of HIV transmission (per partnership) if either partner has one or two 
concurrent sexual relationships 

  

Partnership turnover  

 Partnership dissolution (divorce/separation) rates per month:  

 Low: 0.01665  mean partnership duration: 5  years    

 High: 0.05560  mean partnership duration: 1.5 years    
       

Serosorting   

 Odd ratio of forming a new partnership with someone of the same (versus different) serostatus: 2 

HIV-positive women’s drift out of the partnerships market    

 
Divorce/separation odds ratio in female-positive serodiscordant (F+M-) couples versus (F-M- 
couples): 3   

 Female-positive remarriage odds ratio (versus HIV- women): 0.5    
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Three parameters are used for manipulating HIV-status-based partnership mixing 
patterns. Scenarios with serosorting assume that the odds of forming a partnership with 
someone of the same serostatus are twice as high as the odds of forming a partnership 
with someone who is HIV serodiscordant. The drift of HIV-positive women is 
controlled by two parameters: one that sets elevated dissolution rates in female-positive 
serodiscordant couples (odds ratio=3) and one that sets lower remarriage odds in HIV-
positive compared to HIV-negative women (odds ratio=0.5). For serosorting we do not 
have good empirical estimates to guide us with the parameter settings. By contrast, the 
settings for the drift of HIV-positive women are informed by empirical estimates from 
Porter et al. (2004). 

We first present long-term epidemic trajectories (25 years) for populations with 
different partnership network structures, concurrency level, and partnership turnover 
rates. This is followed by an OLS regression analysis of the gender ratio of infections 
after 10 years. Models where the gender ratio of infections is log transformed produced 
a slightly better fit, but we have given preference to presenting the model with the 
dependent variable in its original form because of the easier interpretation of the 
coefficients. This choice does not affect any of the substantive conclusions. The 
regressions are separately done for the three types of sexual network structure 
(monogamy, gender-asymmetric concurrency, and symmetric concurrency) to allow for 
all two-way interactions with other predictors. 
 
 

3. Results 

The first outputs are trends in HIV prevalence (Figure 3). It is useful to gain an 
understanding of the magnitude and trajectory of the epidemics that are predicted by 
our simulations, even though it is not the focus of this study. In the epidemics portrayed 
in Figure 3 we do not assume any coital dilution or HIV-status-based partnership 
mixing. The plots highlight the contribution of partnership concurrency as well as 
elevated partnership turnover rates to the magnitude of the HIV epidemic. A 
comparison of strict monogamy (green bars) with the two concurrency scenarios 
(orange and blue bars) in each panel shows that partnership concurrency increases the 
epidemic size, but its effect is rather small at low levels of concurrency, and particularly 
in networks with low partnership turnover (the HIV epidemic never takes off in Figure 
3a). In sexual networks with k=40, the epidemic size after 25 years is almost twice that 
of a monogamous population with the same average number of partners per individual 
(Figures 3b and 3d). The differences between symmetric and asymmetric concurrency 
are negligible (with the exception perhaps of networks with high concurrency and a low 
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partner change rate), and these results corroborate the findings of Santhakumaran et al. 
(2010). 

The differences between networks with rapid and slow partnership turnover are 
more striking: irrespective of the network structure (monogamy, asymmetric or 
symmetric concurrency) and concurrency level, sexual networks with fast partnership 
turnover produce epidemics that are roughly four times as large (at 25 years) as in their 
variant with a low rate of partner change (Figure 3c versus 3a, and Figure 3d versus 3d). 
 
Figure 3: HIV prevalence (95%-confidence interval) in sexual networks with 

low and high partnership turnover and various degrees of 
partnership concurrency, by network structure 

 
 a. Low turnover / low concurrency b. Low turnover / high concurrency 

 
   Months     Months 
 
 c. High turnover / low concurrency d. High turnover / high concurrency 

    Months  Months 
 
Legend: = monogamy, = gender-asymmetric concurrency, = gender-symmetric concurrency. Bars 

represent 95% confidence intervals. See Table 2 for a definition of the scenarios.  
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The net effect of an increase in the mean number of partnerships from 0.8 to 0.9 
partnerships per person can be evaluated for partnership networks with monogamy 
(only), and by comparing Figure 3a with 3b, and Figure 3c with 3d. Its effect is 
marginal in networks where partnership turnover is slow, but elevates the epidemic size 
after 25 years by about a third in populations where the partnership change rate is high.  

Trends in the gender ratio of HIV infections are illustrated in Figure 4. In 
populations with strict monogamy and gender-symmetric concurrency, the gender ratio 
of infections quickly rises from unity to about 1.20 (somewhat higher in networks with 
a higher partnership turnover rate). Thus, even though the monthly male-to-female 
transmission probability is set to be twice as high as the female-to-male transmission 
probability, the HIV prevalence in women is only about 20% higher in women than in 
men. The reason is that relationships usually last longer than a few months, and the 
importance of gender differences in transmission probabilities per coital act declines as 
the lifespan of partnerships increases. Networks with a higher rate of partnership 
turnover will therefore maximize gender differences in the susceptibility to HIV 
infection. 

Differences in the gender ratio of infections in networks with low and high rates of 
partnership turnover are quite small compared to those induced by gender-asymmetric 
partnership concurrency: at high levels of partnership concurrency, the female-to-male 
ratio of infections even increases to 1.60. However, in a network with high concurrency 
and rapid partnership turnover (Figure 4d) the gender ratio decreases somewhat 
following a peak after 80 months. This decline is due to the disproportionally high 
female mortality associated with their elevated HIV prevalence, and the modeling 
assumption that all deaths and HIV-positive exits (at age 50) are substituted by an HIV-
negative 15-year-old of the same sex. Given that the modeled HIV prevalence in a 
network with high partnership turnover and high concurrency is quite high (Figure 3d), 
this mortality effect is probably larger than we might observe in empirical populations, 
but it is nonetheless plausible that the gender ratio of infections declines somewhat once 
mortality starts taking its toll in populations where more women are infected than men.  

The factors affecting the gender ratio of infections are further explored by means 
of an OLS regression analysis of the gender ratio after 10 years (Table 3). The 
regression models were fitted separately for each type of network structure (monogamy, 
asymmetric concurrency, and symmetric concurrency), which de facto allows for all 
two-way interactions between the other predictors and the network structure. Other 
interaction effects are less important and have been suppressed. The dataset for this 
analysis is based on 20 simulation runs for each combination of parameter settings. 
Even though there is no sampling variability in simulated data, and significance tests 
can be misleading given that we could readily inflate the sample size, we present the 
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coefficients with their 95% confidence interval to give readers a sense of the 
heterogeneity in the coefficient estimates that the simulations produce.  
 
Figure 4: The female-to-male ratio of infections (95% confidence interval) in 

sexual networks with low and high partnership turnover and various 
degrees of partnership concurrency, by network structure 

 a. Low turnover / low concurrency b. Low turnover / high concurrency 

 
 c. High turnover / low concurrency d. High turnover / high concurrency 

Legend: = monogamy, = gender-asymmetric concurrency, = gender-symmetric concurrency. Bars 
represent 95% confidence intervals. See Table 2 for a definition of the scenarios.  

 
The explained variance (adjusted R-squared) in the female-to-male ratio of 

prevalent infections after 10 years ranges from 0.32 (asymmetric concurrency) to 0.58 
(symmetric concurrency), which indicates that there is considerable random variation 
and that the gender ratio can be quite difficult to predict, even in simulations where all 
the parameters are determined without error. 

The value of the intercepts – i.e., the expected values of the HIV gender ratio when 
all other covariates are set to 0 – ranges from 1.14 for populations practicing gender 
symmetric partnership concurrency to 1.38 for populations with asymmetric 
concurrency. The relatively large and positive coefficient for the variable identifying 
scenarios with high asymmetric partnership concurrency (and mean number of 
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partnerships) underscores that gender asymmetry in the sexual network structure can 
produce substantial differences in the gender ratio of infections. The effect of gender 
asymmetric concurrency on the gender ratio of infections is somewhat compensated by 
coital dilution, but, with the parameter settings that were used here, its effect is rather 
modest. 

In a strictly monogamous population, the coefficient for an increase in the mean 
number of partnerships (the concurrency level is per definition zero) is negative, 
indicating that the importance of differences in biological susceptibility between men 
and women dissipates as men and women spend a larger fraction of their reproductive 
lives in a union.  
 
Table 3: OLS regression of the gender ratio of infections after 10 years, by 

network structure 
VARIABLES* 
 

Monogamy 
 

Asymmetric 
 

Symmetric 
 Concurrency and coital dilution   

    Intercept 1.25 1.38 1.14 
 (1.231 - 1.269) (1.358 - 1.401) (1.123 - 1.166) 
    ↑ Concurrency/Quantum -0.1 0.11 0 

 
(-0.115 - -0.086) (0.093 - 0.126) (-0.014 - 0.018) 

    Coital dilution -0.01 -0.06 0.03 

 
(-0.028 - 0.002) (-0.079 - -0.046) (0.009 - 0.042) 

    Partnership turnover rate    
    ↑ partnership turnover 0.06 0.01 0.11 

 
(0.042 - 0.071) (-0.003 - 0.030) (0.091 - 0.123) 

    HIV-status-based mixing    
    ↑ Divorce (F+M-) 0.13 0.12 0.24 

 
(0.119 - 0.148) (0.101 - 0.134) (0.227 - 0.259) 

    ↓ F+ Remarriage 0.11 0.11 0.22 

 
(0.096 - 0.126) (0.096 - 0.129) (0.207 - 0.239) 

    Serosorting -0.02 -0.02 -0.02 

 
(-0.035 - -0.005) (-0.036 - -0.003) (-0.034 - -0.002) 

    N 1,280 1,280 1,280 
Adjusted R-squared 0.382 0.321 0.584 
 
Notes: 95% confidence intervals in parenthesis.  
* All predictor variables are dichotomies: ↑ Concurrency/Quantum: scenarios with high concurrency and mean number of 

partnerships (versus low); coital dilution: scenarios with coital dilution (versus without); ↑ partnership turnover: scenarios with 
high partnership turnover (versus low); ↑ Divorce (F+M-): scenarios with an elevated separation rate in female-positive 
serodiscordant (versus without); ↓ F+ Remarriage: scenarios with reduced re-entry into partnerships for HIV-positive women 
(versus without); Serosorting: scenarios with serosorting (versus without). More detail about the scenarios is given in Table 2. 

 
From Figure 4 we learned that populations with high rates of partner change tend 

to maximize the gender ratio of infections. In the regression analysis this is confirmed 
by small but positive coefficients. Its effect seems to be the smallest for populations 
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practicing asymmetric concurrency, and that is because these networks produce 
particularly large epidemics with disproportionally high AIDS mortality among women. 
In the simulations these deaths are replaced by 15-year-old HIV-negative subjects of the 
same gender, which keeps the gender ratio of infections in check.  

The drift of HIV-positive women from the partnership market has a substantial 
effect on the gender ratio of prevalent infections. Depending on the network structure, 
the drift elevates the gender ratio of infections by 0.23 to 0.46 points. In our 
simulations, the exclusion or retreat of HIV-positive women from the partnership 
market increases the demand for HIV-negative women, who are now disproportionally 
recruited into new partnerships and exposed to HIV infection. The effect of the drift is 
particularly strong in networks with symmetric partnership concurrency, because HIV-
positive women are now less likely to act as central nodes with multiple partnerships, 
which further reduces the exposure for men in the population. The effect of serosorting 
on the gender ratio of infections is small, if not negligible.  

The female-to-male ratios of infection predicted by our model range from 1.13 for 
a network with gender-symmetric concurrency, low partner turnover, and without the 
drift of HIV-positive women, to 1.75 for a population with gender-asymmetric 
concurrency, high partnership turnover, and the drift of HIV positive women. 
 
 

4. Discussion 

Gender differences in the susceptibility to HIV infection have received considerable 
attention and are deemed important determinants of gender differences in HIV 
prevalence in generalized epidemics. However, the empirical support for gender 
differences in the acquisition probabilities per coital act is fairly limited, particularly for 
low-income countries. In addition, relatively large gender differences in susceptibility 
do not result in equally large differences in HIV prevalence. It can be analytically 
shown that the steady-state gender ratio of infections converges towards the square root 
of the susceptibility ratio in the simplest possible heterosexual differential equation 
transmission model with random partnership mixing. Put more simple, this means that 
gender differences in acquisition probabilities per coital act will start to matter less as 
partnerships last longer. In our simulation study this is corroborated by the fact that the 
estimated gender ratio of infections 10 years into the epidemic is 1.25 in the baseline 
monogamous sexual network, even though the monthly male-to-female transmission 
probability was set to be twice that of female-to-male transmission. The higher gender 
ratio of infection in populations with an elevated rate of partnership turnover lends 
further support to this conclusion, and confirms that networks with rapid partnership 
turnover will maximize gender differences in susceptibility. 
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Empirical estimates for the gender ratio of infections in most southeastern African 
populations with large HIV epidemics range between 1.40 and 1.60, and it is thus 
unlikely that differences in susceptibility fully account for these large gender 
differences in HIV prevalence. Co-factors that are known or believed to affect the 
transmission probabilities include male circumcision, the prevalence of STIs, and 
hormonal contraceptives. Women may also survive longer with HIV, which is related to 
their relatively young age at infection. All these factors could in theory raise empirical 
estimates of the gender ratio of infections observed in generalized epidemics, but were 
not the subject of this study.  

Another class of explanation focuses on gender differences in the exposure to 
HIV-positive partners, and it is in this realm that our simulations contribute most to the 
understanding of gender differences in HIV prevalence. Best described in the literature 
is age mixing, which explains the relatively high prevalence rates in young women. 
Using agent-based simulations, we further demonstrate the importance of (1) gender-
asymmetric partnership concurrency and (2) the drift of HIV-positive women out of the 
partnership market. Coital dilution (in networks with asymmetric partnership 
concurrency only) and serosorting have relatively modest moderating effects on the 
gender ratio of infections.  

The scenarios with asymmetric concurrency and the drift of HIV-positive women 
are informed by empirical studies that consistently identify higher levels of partnership 
concurrency among men compared to women, and the gradual exclusion or retreat of 
HIV-positive women from partnerships. However, the results also depend on the 
assumption that the population-level quantity of partnerships is not correlated with the 
network structure or the partnership mixing patterns that are modeled. This constant 
partnerships assumption is common in sexual network simulation studies because it 
allows us to isolate the net effects of the network attribute of interest (e.g., Morris and 
Kretzschmar 1997), but it remains largely unverified by empirical studies. We return to 
this issue below.   

The asymmetric concurrency effect on the gender ratio operates via two 
mechanisms. First, asymmetric concurrency exposes seronegative concurrent partners 
of a man to elevated transmission probabilities associated with the high viral load 
during the acute phase if that man has just acquired HIV from (one of) his other 
partner(s).16 The second mechanism is intricately related to the modeling assumption 
that keeps the number of partnerships constant across the different sexual network 
types. Under this assumption, more male concurrency implies more isolated male nodes 

                                                           
16 See Eaton, Hallett, and Garnett (2011) and Goodreau et al. (2012) for a comprehensive discussion of the 
interaction between partnership concurrency and acute infection. 
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in the network,17 and women will on average spend more time in partnerships than men 
(which increases their relative exposure to HIV). It is not clear to what extent this 
assumption is realistic, however. In an empirical study of the effects of polygyny on 
HIV epidemic propagation, we could not find much evidence for the ‘monopolizing 
polygynists’ hypothesis (i.e., the proposition that polygyny among older men leads to a 
deprivation of sexual partners for the younger men) (Reniers and Tfaily 2012). We do 
not know of other studies that have addressed this question, and it would be precipitous 
to entirely discard the validity of the constant partnerships assumption on the basis of 
one study only. 

The drift of HIV-positive women from the partnership market consists of two 
processes that operate in parallel: (1) the relatively high partnership dissolution rates 
among female-positive serodiscordant couples, and (2) the relatively low partnership 
formation rates among HIV-positive women. As we have shown, this phenomenon 
could have considerable effects on the gender ratio of infections (particularly in 
networks with gender-symmetric concurrency), but it also rests on the assumption that 
the demand for partners in the population is unchanged. Given the constant partnership 
distribution in the simulated populations, the drift leads to the substitution of HIV-
positive women in partnerships by HIV-negative women, and that will increases HIV-
negative women’s exposure to HIV-positive men, as well as decrease male exposure to 
HIV-positive women.  

Using variation in the simulated attributes of sexual networks and sexual mixing 
patterns, we model populations with a gender ratio of infections ranging from 1.13 to 
1.75, and that suggests that these factors can indeed help explain some of the 
heterogeneity in the gender ratio of infections currently observed in empirical data. 
Even though the nature of our evidence comes with the disclaimer that it is entirely 
based on simulated data that rely on a number of simplifying assumptions, it suggests 
that we need to look beyond individual behavior or gender differences in biological 
susceptibility if we are to fully understand, and remedy, gender inequalities in HIV 
infection in generalized epidemics. Such remedies may have to target upstream or distal 
determinants of the inequalities between men and women that are discussed elsewhere 
(UNAIDS, UNFPA and UNIFEM 2010), but we hope that our study sheds light on the 
mechanisms through which they operate. 
 
 

                                                           
17 See Reniers and Watkins (2010) for an illustration of sexual networks with strict monogamy, gender-
asymmetric concurrency, and symmetric concurrency. 
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