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RESULTS
•	 Patients who initiated Treatment B were more likely to be male, enter 

the study in earlier calendar years, be current smokers, and have 
histories of acute myocardial infarction and heart failure (Figure 2).

•	 By design, the crude and true incidence rate ratio (IRR) values were 
3.00 and 1.80, respectively (Table 1).

•	 Results of the analytic methods in the estimation of the treatment 
effect under the different MAR scenarios are presented in Figure 3:

–	 The CC and MI methods performed similarly, with almost 
identical relative biases in the 5% and 10% MAR scenarios. MI 
performed slightly better under the 20% MAR scenario.

–	 The SCMV method produced IRR point estimates that were more 
shifted away from the null than estimates produced by the other 
methods. SCMV was the poorest-performing method across all 
MAR scenarios as determined by having the largest relative biases.

–	 The IRR point estimates derived from the PSCC + MIMC method 
were the smallest in value and closest to the true IRR value of 1.80.
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BACKGROUND
•	 In non-randomised settings, patients who receive different treatments may also 

differ in their underlying characteristics. Failure to adjust for such potential 
confounders could yield a biased interpretation of the treatment effect.

•	 The propensity score (PS), defined as the probability of receiving a particular 
treatment given the patient’s underlying characteristics, summarises measured 
confounders into a single variable.1

•	 Although PS methods are used ubiquitously in non-randomised research, the 
literature is scarce regarding the impact of missing covariate data on the 
treatment effect calculation.2

OBJECTIVE
•	 To evaluate the performance of various PS-based methods in the presence of 

missing covariate data on treatment effect estimation in a simulated 
patient-level data set.

METHODS
Simulated Data
•	 Patient-level data were simulated based on a published observational cohort 

study of overactive bladder disease.3

•	 Two non-randomised treatment cohorts (Treatments A and B), totalling 96,000 
patients, were followed over the course of 9 years (2004 to 2012) until censoring 
or the occurrence of cardiovascular (CV) mortality.

•	 Follow-up times were simulated using the Weibull distribution, and 
CV mortality was simulated as a Poisson event with a log-time offset.

•	 Baseline covariates included demographic, clinical, and lifestyle variables.
•	 By design, a greater risk of CV mortality was associated with entering the study 

in earlier calendar years, smoking status, and history of CV conditions.
•	 Smoking status and CV history covariates were then set to missing at random 

(MAR) in 5%, 10%, and 20% of patients under the following assumptions:
–	 From 2004 to 2006, these variables were optional data fields at all sites.
–	 From 2007 to 2008, these variables were mandatory fields at some sites 

but optional at others.
–	 From 2009 to 2012, these fields were mandatory data fields at all sites.

Statistical Methods
•	 Logistic regression was employed to compute patient-level PS values where 

receipt of Treatment B was modelled as a function of all covariates of interest  
using the non-missing data.

•	 PS trimming as illustrated in Figure 1 was performed to ensure comparability of 
treatment cohorts.

Figure 1.	 Schematic of PS Trimming Process
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Figure 3.	 IRR Estimates From Different Analytic Methods and Levels of Missing Data

IRR = incidence rate ratio; CL = confidence limits
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CONCLUSIONS
•	 In our simulation, implementing SCMV introduced a notable amount 

of additional bias compared with ignoring the missing data 
altogether in the PS analysis.

•	 The MI method did not yield any notable benefits, especially in 
scenarios of smaller amounts of missing data.

•	 PSCC + MIMC resulted in the least amount of bias and provided a 
notable benefit, especially with larger amounts of missing data.

DISCUSSION
•	 Relative bias was improved with increasing missingness, which may 

be attributable to the relationships between treatment, outcome, 
and covariates participating in the mechanism of missingness in this 
particular simulation.

•	 MI is often considered a default method of handling missing  
covariate data in PS analyses; however, our simulation results 
dispute its default status.

•	 The data in this simulation were MAR by design, but in real-world 
comparative effectiveness research, the mechanism of data 
missingness is rarely known.

•	 These results were based on a single simulation of a specific scenario. 
Repeated simulations and other simulations that vary several 
parameters are needed to draw more generalised conclusions.

•	 The treatment effect was estimated in the post-trimmed population by 
performing a Poisson regression with a log-time offset where CV mortality was 
modelled as a function of the treatment cohort and PS decile category.

•	 This process was repeated for each MAR scenario using the following 
methods to estimate the treatment effect in the presence of missing data:

–	 Complete case (CC): Generating PS values that included only patients 
with fully complete covariate data

–	 Separate category for missing values (SCMV): Creating a separate 
category for covariates with missing values for inclusion in the PS model

–	 Multiple imputation (MI): Employing MI using all available information in the 
data set to impute missing covariate values for inclusion in the PS model

–	 PS complete covariate with MI for missing covariates 
(PSCC + MIMC): Generating the PS model using only covariates with 
complete data, then adjusting for remaining covariates in conjunction with 
MI in direct modelling of the outcome as a function of treatment, PS, and 
the multiply imputed covariates

•	 Relative bias in each coefficient estimate was calculated as the absolute bias 
(difference between the estimated and true values) divided by the true value.
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Table 1.  CV Mortality and Incidence Estimates in Treatment 
Cohorts

 
Treatment A
N = 49,000

Treatment B
N = 47,000

Number of CV deaths 100 293

Person-years 42,849 41,823

IR per 1,000 person-years 
(95% CL) 2.33 (1.90, 2.84) 7.01 (6.23, 7.86)

Crude IRR (95% CL) Ref 3.00 (2.38, 3.81)

True IRR (by design) Ref 1.80

CL = confidence limit; IR = incidence rate.
Note: 95% CLs for the IR and IRR were derived using methods described by 
Dobson et al.4 and Sahai and Khurshid5, respectively.

Figure 2.  Baseline Patient Characteristics of Treatment Cohorts

AMI = acute myocardial infarction; CHD = coronary heart disease; HF = heart failure; 
PAD = peripheral artery disease; TIA = transient ischemic attack. *Percentages pre-
sented for variables that participated in the MAR scenarios were derived from the 
non-missing data; however, these values were equivalent across all MAR scenarios.
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