REFERENCES

- Kenneson A, Cannon MJ. Review and meta analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virology 2017:17.4: 253-76.
- 2. Manicklal S, Emery VC, Lazzarotto T, Boppana SB, Gupta RK. The "silent" global burden of congenital cytomegalovirus. Clin Microbiol Rev. 2013 Jan;26(1):86-102.
- ClinicalTrials.gov. Search results for "congenital CMV." Available at: https://clinicaltrials.gov/ct2/results?term=congenital+CMV&Search=Sear ch. Accessed April 20, 2017.
- 4. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA. 2016 Sep 13;316(10):1093-103.
- 5. Halwachs-Baumann G, editor. Congenital cytomegalovirus infection: epidemiology, diagnosis, therapy. New York: Springer; 2011.
- 6. Meyers J, Sinha A, Salome S, Trantham L, Candrilli C. The incremental economic burden of congenital cytomegalovirus in the first year of life: A retrospective case-control analysis of Medicaid and commercial health insurance claims data. Podium presentation at: Congenital Cytomegalovirus Public Health & Policy Conference; September 23-25, 2018. Burlington, VT.
- 7. Lopez AS, Ortega-Sanchez IR, Bialek SR. Congenital cytomegalovirus-related hospitalizations in infants<1 year of age, United States, 1997–2009. Pediatr Infect Dis J. 2014;33(11):1119.
- 8. Candrilli SD, Trantham L. The economic burden of congenital cytomegalovirus-related hospitalizations in the United States. Value Health. 2017;20(9):A784-5.
- 9. Inagaki, Kengo, et al. "Risk Factors, Geographic Distribution, and Healthcare Burden of Symptomatic Congenital Cytomegalovirus Infection in the United States: Analysis of a Nationally Representative Database, 2000-2012." The Journal of pediatrics (2018).
- 10. Lawrence RS, Durch JS, Stratton KR., eds. Vaccines for the 21st century: a tool for decisionmaking. National Academies Press; 2001.
- 11. Gantt S, Dionne F, Kozak FK, Goshen O, Goldfarb DM, Park AH, et al. Cost-effectiveness of universal and targeted newborn screening for congenital cytomegalovirus infection. JAMA Pediatr. 2016 Dec 1;170(12):1173-80.
- 12. Dempsey AF, Pangborn HM, Prosser LA. Cost-effectiveness of routine vaccination of adolescent females against cytomegalovirus. Vaccine. 2012;30(27):4060-6.
- 13. Lavelle TA, Weinstein MC, Newhouse JP, Munir K, Kuhlthau KA, Prosser LA. Economic burden of childhood autism spectrum disorders. Pediatrics. 2014 Mar 1;133(3):e520-9.
- 14. Kancherla V, Amendah DD, Grosse SD, Yeargin-Allsopp M, Braun KV. Medical expenditures attributable to cerebral palsy and intellectual disability among Medicaid-enrolled children. Res Dev Disabil. 2012 Jun 30;33(3):832-40.
- 15. Wittenborn JS, Rein DB. Cost of vision problems: the economic burden of vision loss and eye disorders in the United States. NORC at the University of Chicago. Prepared for Prevent Blindness America; Chicago, IL. June 11, 2013.
- 16. Mitra S, Findley PA, Sambamoorthi U. Health care expenditures of living with a disability: total expenditures, out-of-pocket expenses, and burden, 1996 to 2004. Arch Phys Med Rehab. 2009 Sep 30;90(9):1532-40.
- 17. Bureau of Labor Statistics. Inflation & prices: medical care services in U.S. city average, all urban consumers, not seasonally adjusted. 2017 Available at: https://www.bls.gov/data/. Accessed November 10, 2017.

A Framework for Assessing the Lifetime Economic Burden of Congenital Cytomegalovirus in the United States

Aaron Lucas,¹ Anushua Sinha,² Karen B. Fowler,³ Dee Dee Mladsi,¹ Christine Barnett,¹ Salome Samant,² Laura Gibson⁴

¹RTI Health Solutions, Research Triangle Park, NC, USA; ²Merck & Co., Inc., Kenilworth, NJ, USA; ³University of Alabama at Birmingham, Birmingham, AL, USA; ⁴University of Massachusetts Medical School, Worcester, MA, USA

Congenital Cytomegalovirus
Public Health & Policy Conference;
September 23-25, 2018;
Burlington, Vermont

RTI Health Solutions

A Framework for Assessing the Lifetime Economic Burden of Congenital Cytomegalovirus in the United States

Aaron Lucas, Anushua Sinha, Karen B. Fowler, Dee Dee Mladsi, Christine Barnett, Salome Samant, Laura Gibson

¹RTI Health Solutions, Research Triangle Park, NC, USA; ²Merck & Co., Inc., Kenilworth, NJ, USA; ³University of Alabama at Birmingham, Birmingham, AL, USA; ⁴University of Massachusetts Medical School, Worcester, MA, USA

BACKGROUND

- 0.4% to 0.7% of births in the United States (US) are infected with congenital cytomegalovirus infection (cCMVi).1
- 12.7% with cCMVi exhibit disease (cCMVd), and 50% of patients with cCMVd develop permanent physiological abnormalities such as sensorineural hearing loss (SNHL), vision loss, or neurological impairments.2
- No US Food and Drug Administration-approved vaccines or medications exist to prevent acquisition of CMV during pregnancy or mother-fetus transmission, but clinical trials are ongoing.
- Decision makers require estimates of cCMVi's economic implications to assess the value (e.g., cost-effectiveness) of prevention efforts accurately

OBJECTIVE

- Develop a conceptual framework to characterize the lifetime economic burden of cCMVi in the US both within and outside the health care (HC) system.
- Identify data gaps to prioritize future research and provide preliminary cost estimates to understand this burden in the US.

METHODS

An inventory of cost components (direct HC, direct non-HC, indirect, and intangible costs) associated with cCMVd was developed in accordance with current US costeffectiveness standards4 and previous burden-ofillness studies in congenital diseases.

DISCUSSION

- The lifetime economic burden of cCMVi in the US is not well understood in the literature, and substantial data gaps exist for estimating this burden.
- · While existing cCMVi patient registries may help to fill gaps, challenges exist when using such data (e.g., all cost components and the costs before cCMVi diagnosis may not be captured).
- Data from studies of non-cCMVi-specific populations (e.g., cost studies of SNHL) may be useful. However, such studies need to include non-HC and indirect costs and measures of the intangible
- This study supports a research agenda in the field of cCMVd:
- Expanding data collected in patient registries (e.g., lost wages, time, and intangible burden of cCMVd)
- Research into linking or supplementing patient registeries with external datasets (e.g., health insurance claims or patient surveys)
- Estimating the cost of delayed cCMVi diagnosis
- Increasing awareness and population size of patient registries
- Limitations of this study include omitting the economic burden during the prenatal period and using a targeted rather than systematic
- To accurately evaluate the cost-effectiveness of new interventions for cCMVi, research into cCMVi's full range of economic consequences on the patient, family, and caregiver needs to be undertaken.

RESULTS

Conceptual Framework

Figure 1. Conceptual Framework Chance Tree for Estimating the Lifetime Economic Burden of cCMV

HPA = hospital pharmacy administrator; ME = medical epidemiologist; PA = patient advocate; PR = payer representative

Gap Analysis

- 4 cCMVi cost studies found^{6,7,8,9}
- All for patients < 1 year of age
- No non-HC included in any study
- No cost studies focused on patients with severe impairment.
- · No studies of the indirect costs or intangible measures of disease burden were found for
- · Cost-effectiveness analyses of cCMVi interventions mainly rely on data published more than 25 years ago for non-cCMV-specific patient populations with developmental disabilities (e.g., Lawrence et al.,10 Gantt et al.,11 and Dempsey et al.12

Data From Targeted Literature Review

 The framework was populated (Tables 1-3) with US-based cost estimates from the literature for patients with cCMVi whenever possible.

Table 1. Costs Due to Diagnosis of cCMVi in the First Year of Life

Table 1. Costs Due to Diagnosis of CCMVI in the First fear of Life			
	Cost Component	Cost Estimate	
	Direct health care costs per patient		
	Post-birth to 1 year old	\$ 50,0256	
	Direct health care costs per hospitalization		
		\$ 99,978 ⁷	
Direct HC Costs ^a	Birth	Vaginal: \$ 40,771 ⁶	
		Caesarian: \$95,853 ⁶	
	Birth to 1 year old	< 1 year old: \$ 76,965°	
		< 1 month old: \$ \$92,681 ⁸	
		\$ 106,948°	

Table 2. Cost Components for Normal Development with Physiological Abnormality			
	Cost Component	Annual Cost Estimate	
Direct HC Costs ^a for Sensorineural Hearing Loss	First-year hearing loss is identified	\$1,931 - \$1,991"	
	< 6 years old	\$1,907 - \$1,9561	
	6 to 12 years old	\$1,583 - \$1,670"	
	13 to 17 years old	\$1,574 - \$1,66011	
	≥ 18 years old	\$977"	
Direct HC Costs for Vision Loss	Blindness/vision loss	\$6,88413	
	Retinal disorders (without diabetes)	\$3,85413	
	Strabismus	\$2,44313	

Table 3. Cost Components for Developmental Disability in Childhood/Adolescence and Permanent Developmental Disability in Adulthood

	Cost Component	Annual Cost Estimate
Direct HC Costs for Developmental Disability in Childhood/ Adolescence	ООР	ASD: \$217 ¹⁴
	Third-party payers	ASD: \$3,602 ¹⁴
		ID without CP: \$25,08615
		CP without ID: \$24,634 ¹⁵
		CP with ID: \$63,847 ¹⁵
Direct Non- HC Costs for Developmental Disability in Childhood/ Adolescence	Education costs	ASD: \$10,269 ¹⁴
	Condition-related therapy and family- coordinated services	ASD: \$417 [™]
	Unpaid caregiver time costs	ASD: \$6,070 ¹⁴
Direct HC Costs for Permanent Developmental Disability in Adulthood	OOP	\$2,24016
	Third-party payers	\$16,14416

cCMV = congenital cytomegalovirus; OOP = out-of-pocket; ASD = autism spectrum disorder; CP = cerebral palsy ID = intellectual disability; USD = United States dollars.

Cost estimates are inflated to 2018 USD using the medical care component of the CPI.¹⁷

REFERENCES

See handout for references.

SOURCE OF SUPPORT

This study was funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.

CONTACT INFORMATION

Aaron Lucas

RTI Health Solutions 200 Park Offices Drive Research Triangle Park, NC 27709 Phone: +1.919.316.3731